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ABSTRACT:
In bioinformatics, sequence alignment is a common and insistent task. Biologists align genome sequences to find 
important similarities and dissimilarities in them. Multiple heuristics and dynamic programming based approaches 
are available for sequence alignment. Smith-Waterman (SW), an exact algorithm for local alignment, is the most 
accurate of them all. However, the space and time complexity of the SW algorithm is quadratic. It is imperative to 
use parallelism and distributed computing techniques in order to speed up this process. In this paper, we discuss and 
evaluate an OpenMP based implementation of SW algorithm. All the experiments have been performed on a Linux 
based multi-core machine thereby reducing the overall complexity of the SW algorithm from quadratic to linear. The 
results obtained with various input sequences demonstrate that the parallel version of the SW algorithm runs 2.63 
times faster than its sequential counterpart.

KEYWORDS: Smith-waterman, Sequence Alignment, OpenMp, DNA, Application Program Interface (API), Dynamic 
Programming, FASTA, BLAST 

* Department Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan.

INTRODUCTION

Sequence alignment has been a longstanding research 
topic in the area of molecular biology. For making 
inferences about newly discovered genes, biologists 
compare their DNA sequences with the existing ones i.e. 
genes of some known functionality to find structural and 
functional similarities between them. Bioinformaticians 
use sequence alignment to find evolutionary trend in 
different species, study diseases and their inheritance in 
a more efficient and improved manner. These and many 
more applications make sequence alignment an active 
bioinformatics research area. 

Biological sequence alignment is the process of 
comparing DNA, RNA or protein sequences to find 
similarities between them. This simple comparison has 
become a challenge because of the volume of available 
genetic data which is getting doubled every six months1, 
much higher than advancement in computing power. 

Many Dynamic Programming (DP) based algorithms 
were proposed for computing optimal genome sequences 
alignment. Among them, Smith-Waterman (SW) algo-
rithm2, proposed by Smith and Waterman, is the most 
accurate one. However, the time and space complexity of 
the SW algorithm is quadratic with respect to the length 
of the sequences to be compared and hence results in a 
large computational time. Heuristics based approaches 

e.g. BLAST3,4 were proposed to minimize the compu-
tational time at the cost of reduction in accuracy i.e. 
the lesser time efficient heuristics give more accurate 
results and vice versa. 

Parallel and distributed computing based techniques 
were applied to accelerate computationally expensive 
sequence alignment algorithms. Many proposed systems 
execute SW on clusters5-7 and grids8. Parallel program-
ming paradigms like Open Mp and MPI have been used 
to parallelize the global alignment algorithm namely 
Needleman-Wunsch (N-W) in the recent past9,12. These 
solutions significantly reduced the overall processing 
time. 

In this paper, we present the parallel implementation of 
a local sequence alignment algorithm Smith Waterman on 
a multi-core machine and analyze its performance gain.

Sequence alignment

Sequence alignment is of utmost importance to the biol-
ogists. By aligning the sequences of the entire genome, 
biologists find important matches and mismatches in 
them. From biological perspective, a match means similar 
structure, conserved regulatory regions, while mismatch 
means functional differences and diverged regions etc.

Different methods have been proposed by researchers 
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for the optimal alignment of genome sequences. These 
methods are broadly classified into two categories 
i.e. global and local. Global methods attempt to find 
maximum possible match from end to end while local 
methods find small similar stretches in sequences11. The 
fundamental and well known algorithms for sequence 
alignment are; Needleman-Wunsch for global alignment 
and Smith-Waterman for local alignment with the latter 
being used most commonly in computational bioinfor-
matics. Both these algorithms are based on well-known 
technique called dynamic programming. DP based 
algorithms give accurate comparison results but are 
computationally expensive.

Heuristic based approaches like FASTA and BLAST 
operate in linear time. BLAST is amongst the most 
commonly used bioinformatics tools because of its 
computational power. BLAST is around 50 times faster 
than dynamic programing based algorithms which is 
remarkable. However, its accuracy is not up to the mark. 
FASTA is a software package, developed by David J. 
Lipman and William R. Pearson for aligning DNA and 
Protein sequences. 

Smith Waterman algorithm align DNA sequences 
using similarity matrix. Calculation of each element in 
the matrix as shown in Figure 1 is dependent on its 3 
neighbors’ values: left (west) element, upper (North) 
element, and diagonal (North-West) element. These 
intrinsic dependencies limit the processing power of 
the SW algorithm.

DNA sequences are represented as strings composed 
of elements of the alphabet S = [A, C, G, T]. In order to 
find similarity or matching pattern in DNA sequences, we 
have to identify the optimal alignment in them because 
they are rarely identical. Sequence alignment means 
finding one to one correspondence between characters of 
the two sequences. Gaps can also be inserted at different 
locations such that the sequences end up with the best 
possible match.

smith-waterman algorithm

SW is the core of dynamic programming algorithms. 
SW being an exact method gives optimal result at the 
cost of increased computational complexity. To align 
two sequences of size ‘n’ and ‘m’, this complexity 

becomes O(mn). 

SW algorithm finds similar regions/stretches in the 
input sequences, namely subject and query sequence, 
by finding the distance characterized by minimal cost of 
transformation and performing two elementary operations; 
insertion/deletion (gap operation) and substitution. 

Considering the two sequences to be compared are 
‘sub’ and ‘qry’ with size ‘m’ and ‘n’. SW finds the 
similar subsequences by computing a matrix ‘H’ using 
Equation 1. The scoring scheme associated with the SW 
algorithm is as follows.

Scoring scheme = 

‘S’ is the score associated if the two characters are 
similar (match); ‘D’ is penalty, if the two characters 
are different (mismatch); ‘g’ is gap penalty, if any gap 
is inserted.

H(i, j) = max					     (1)

Implementation of SW algorithm is a 3 step process 
given below:

Initialization

The first step in implementing SW algorithm is the 
initialization of the first row and first column of a matrix 
to 0. The pseudo code for initialization is as follow:

Figure 1. Data dependencies in Smith-Waterman 
Algorithm
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H(0,j) = 0

H(i,0) = 0

Matrix Fill-up 

In matrix fill-up stage, the entire matrix is filled up 
using Equation 1. The pseudo code for computing the 
matrix is as follows:

for i = 1 to m

for j = 1 to n 

H(i,j) = max as a per Equation 1

Trace back

This step is performed to obtain the local alignment 
result. Since SW is a local alignment algorithm, its 
traceback starts from the cell with maximum value and 
following the arrow as shown in Figure 2 till a minimum 
threshold is reached which in most of the cases is zero. 
The arrow direction shows the origin of the value. 
A diagonal arrow means that in both sequences the 
character at that location is similar (match). An arrow 
in vertical direction means a gap should be inserted in 
the horizontal sequence and a horizontal arrow means, 
insertion of a gap in vertical sequence.

in the matrix and reaches the first cell i.e. end to end. A 
sample alignment example is shown in Figure 3, where 
the scoring scheme used is: S = +1, D = -1 and g = 2. 

Sub:	 A	 G	 C	 G	 T

Qry:	 A	 G	 --	 G	 T

Sore:	+1	 +1	 -2	 +1	 +1

Figure 2. Similarity matrix for two sequences ‘sub’ 
and ‘qry’

Since SW is a local alignment algorithm, it starts 
from the maximum score in the matrix (corresponding 
character T) and gives aligned subsequence. In global 
alignment algorithms, this process starts from the last cell 

Figure 3. Sequence alignment example

PROPOSED APPROACH

In SW algorithm, the matrix fill-up stage is the most 
crucial one from computational perspective. All compu-
tations and comparisons for finding the maximum value 
are carried out in this stage. This step can be expedited if 
we parallelize the process of computing the cell values. 
This seems complex at first due to the intrinsic data 
dependencies. Computation of each cell value depends on 
the values of 3 neighboring cells as discussed previously 
i.e. is dependent on the values of cells , and which in 
turn are dependent on their neighbors and so on.

By properly observing this overall process, it is 
clear that elements in anti-diagonals of the similarity 
matrix can be calculated simultaneously because they 
are independent of each other and their predecessors’ 
values have already been calculated as shown in Figure 
4. This parallel computation of anti-diagonal elements 
significantly reduces the time complexity of an matrix 
from to , i.e. from quadratic to linear. 

Exploiting this nature of the SW algorithm, we have 
developed a parallel version of the algorithm in Open 
Multi-Processing (OpenMP)12, an Application Program 
Interface (API) that supports multi-platform shared 
memory multi-processing in C, C++ and FORTRAN. 
In OpenMP, workload is distributed between threads 
in such a way that they can communicate by sharing 
variables and can be scheduled differently.

In general, for two sequences of size M and N, the 
total number of anti-diagonals are and the number of 
elements in the longest diagonal is.

The pseudo code for parallelizing the SW algorithm 
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A. Sequential Implementation

The experimental results of sequential SW algorithm 
with input sequences of various lengths and average 
execution time are summarized in Table I. The first 
column in Table I shows the query length whereas the 
second column gives the average execution time in milli 
seconds (ms). We have used the term Average Execution 
Time as the experiment was repeated 20 times for each 

Figure 4. Independent streams in similarity matrix

Figure 5. Pseudo code for parallelizing (for) loop in SW

using OpenMP programming paradigm is shown in 
Figure 5.

For x = 1 to M + N − 1

{	 # Prgma omp parallel for 

For temp = 1 to length of diagonal 

Computer the element}

Table 1.  Sequential Execution Time

Query Length Average Execution Time 
(ms)

100 170 
200 340 
300 500 
400 660
0.3 37.88
0.25 65.62
0.2 99.05

query sequence and the average time is reported in the 
Table 1. The results show that the execution time is 
directly proportional to the number of sequences and 
query length. 

B. OpenMP Based Parallel implementation

As discussed previously, the performance of the 
sequential code is directly dependent on the query size. 
For parallel implementation, the number of threads 
created are equally important. The parallel code if 
executed with a single thread is equivalent to its serial 
counterpart. The effect of varying number of threads while 

Figure 6. Number of threads vs speedup

The outer ‘for loop’ cannot be parallelized because 
the anti-diagonals are dependent on each other and it 
will iterate M + N-1 times. The inner loop compute 
the elements of each anti diagonal which are mutually 
independent and hence can be computed in parallel. The 
OpenMP ‘for construct’ has been used to parallelize 
this loop. 

EXPERIMENTAL RESULTS 

The experimental results described in this section 
were obtained by running the SW algorithm on a Linux 
based machine having four Intel cores of 2.6 GHz clock 
frequency each. The following subsections present the 
results for both sequential and parallel implementations 
on the same platform.
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keeping the query length unchanged on performance gain 
is reported in Figure 6. The maximum performance as 
shown in the figure is achieved by setting the number 
of threads to 4. 

Table 2 presents the average execution time of the 
parallel implementation of SW algorithm for sequences 
of various length. All the experiments have been repeated 
20 times and the average execution time is presented. 
The number of threads in all the experiments is 4 as 
it gives optimal results as demonstrated in Firgure 6.

C. Sequential VS Parallel Implementation

Figure 7 presents the performance comparison of 
sequential and parallel implementations. The OpenMP 
based parallel implementation as shown in Figure 6 gives 
the best performance when the number of threads is 4. 
The results demonstrate that on the average the OpenMP 
based parallel implementation performs 2.63 times better 
than its sequential counterpart.

CONCLUSION AND FUTURE WORK

We have presented a scalable and parallel implemen-
tation of SW algorithm using OpenMP programming 
paradigm. The results show notable improvement i.e. 

2.63 times faster than its serial counterpart which is 
significant. The technique presented here can easily be 
ported to any available multi-core machine.

As a future work, the authors plan to run the same 
code on a High Performance Computing (HPC) cluster 
having 160 cores and 640 GB of main memory established 
in Ghulam Ishaq Khan Institute (GIKI) of Engineering 
Sciences in Khyber Pakhtunkhwa, Pakistan.
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